Mots clés |
Disque d'accrétion, Accrétion par vent, Rayons X, Astrophysique, Potentiel de Roche, Calcul Haute Performance, Mécanique des fluides, Systèmes binaires |
Resumé |
L'émission X associée à l'accrétion sur un objet compact présenter une important variabilit photométrique et spectroscopique. Quand l'accréteur est en orbite autour d'une étoile Supergéante, il capture une fraction du vent stellaire supersonique qui forme des chocs dans son voisinage. L'amplitude et la stabilité de cette focalisation gravitationnelle conditionnent le taux d'accrétion de masse responsable, in fine, de la luminosité X des Binaires X Supergéantes (SgXB). La capacité de ce flot à faible moment angulaire à former un disque susceptible de présenter des instabilités est en jeu.Grâce à des setups numériques sophistiqués, nous caractérisons la structure du flot de Bondi- Hoyle-Lyttleton sur un objet compact, depuis le choc jusqu'au voisinage de l'accréteur, typiquement 5 ordres de grandeur plus petit. L'évolution du choc détaché qui se forme autour de l'accréteur (structure transverse, angle d'ouverture, stabilité, profil de température) avec le nombre de Mach est détaillé. La fiabilité de ces simulations basées sur le code hautes performances MPI-AMRVAC est étayée par la topologie de la surface sonique, en accord avec le attentes théoriques.Nous développons un modèle synthétique de transfert de masse dans les SgXB qui couple le lancement du vent, les paramètres stellaires, l'évolution orbital du flot et l'accrétion. Nous montrons que la forme du flot est entièrement détermimée par les facteur de remplissage et d'Eddington, le rapport de masse et le multiplieur de force alpha. Avec les paramètres d'échelle, nous pouvons en déduire, eg, la luminosité X, le processus d'accrétion et le cisaillement du flot. |