L'atmosphère des exoplanètes avec le James Webb Space Telescope
Exoplanet atmospheres with the James Webb Space Telescope
par Achrène DYREK sous la direction de Pierre-Olivier LAGAGE
Thèse de doctorat en Physique de l'univers
ED 560 Sciences de la terre et de l'environnement et physique de l'univers, Paris

Soutenue le vendredi 29 septembre 2023 à Université Paris Cité

Sujets
  • Astronomie -- Instruments
  • Astronomie infrarouge
  • Exoplanètes
  • Planètes -- Atmosphères
  • Réduction des données (statistique)

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

https://theses.hal.science/tel-04552597 (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Exoplanète, Atmosphère, Infrarouge, Instrumentation, Réduction et traitement de données, Géantes gazeuses, Rocheuses tempérées
Resumé
Ma thèse est consacrée à l'étude des atmosphères d'exoplanètes avec le télescope spatial James Webb Space Telescope (JWST). L'étude et la caractérisation d'atmosphères d'exoplanètes représente aujourd'hui un enjeu majeur au sein de la communauté scientifique et au-delà, puisqu'il s'agit de mettre en perspective tous ces mondes découverts au cours des trois dernières décennies et notre propre Système solaire, seul hôte connu de la vie à ce jour. La première partie de ce manuscrit est consacrée à une introduction qui présente l'état de l'art de notre connaissance des atmosphères d'exoplanètes en termes de composition atomique et moléculaire, de structure et de dynamique. Cette introduction se concentre sur l'étude des atmosphères d'exoplanètes dites transitantes (lorsque la planète passe devant ou derrière son étoile dans l'axe de visée des télescopes) et fournit une description de cette méthode observationnelle ainsi que des défis associés. La deuxième partie de ce manuscrit s'intéresse à l'élaboration de simulations d'observations d'atmosphères d'exoplanètes à l'aide du Mid-InfraRed Instrument (MIRI) du JWST (à l'époque encore en attente de son lancement) et de son spectromètre basse résolution (LRS). Mon objectif principal est la conception d'un outil de simulation complet et robuste qui permette à la communauté de valider les méthodes de réduction de données et de prédire les détections moléculaires [Dyrek+, sub., 2023, Morello, Dyrek+, 2022]. La troisième partie de ce manuscrit est dédiée à l'étude des performances en vol du LRS de MIRI après le lancement du JWST, le jour de Noël 2021. En effet, l'arrivée des premières données du JWST marque le début d'une étape cruciale de ma thèse. En particulier, je m'appuie sur le premier transit exoplanétaire observé par MIRI, celui de la Super-Terre L168-9b, choisie comme cible pour l'étude des performances. A partir de ces données, je me suis concentrée sur l'identification de variations instrumentales infimes qui pourraient porter atteinte à la stabilité temporelle des observations. De fait, je discute des axes d'améliorations des méthodes de réduction de données dans le cadre de l'étude d'exoplanètes en transit [Dyrek+, sub., 2023]. La dernière partie de ce manuscrit est consacrée à l'analyse scientifique des courbes de lumières photométriques et spectroscopiques d'atmosphères d'exoplanètes, des géantes gazeuses aux rocheuses tempérées. Je présente mes travaux collaboratifs dans le cadre du Temps Garanti d'Observation (GTO) et de l'Early Release Science (ERS) du JWST pour lesquels j'ai mené la réduction et l'analyse des données. En particulier, je m'intéresse à la super-Neptune WASP-107b dont l'analyse de données a conduit notamment à la première détection de dioxyde soufre (SO2) en infrarouge moyen et à la première détection de nuages de silicates [Dyrek+, sub., 2023b]. Enfin, je présente la première détection de l'émission thermique d'une exoplanète rocheuse et tempérée, TRAPPIST-1b, pour laquelle nous avons contraint la température de brillance qui indique l'absence d'une atmosphère dense [Greene +, 2023]. Le chapitre final est dédié à l'ensemble des perspectives ouvertes par la révolution observationnelle du JWST et de la future mission dédiée aux exoplanètes : Ariel.