Diffeomorphic image registration taking topological differences into account : metamorphosis on brain MRI containing glioblastomas
Recalage difféomorphique d'images médicales avec prise en compte des différences topologiques : métamorphoses appliquées aux IRM de cerveaux avec glioblastome
par Anton FRANCOIS sous la direction de Joan Alexis GLAUNÈS
Thèse de doctorat en Mathématiques appliquées
ED 386 Sciences Mathematiques de Paris Centre

Soutenue le mardi 23 mai 2023 à Université Paris Cité

Sujets
  • Difféomorphismes
  • Glioblastome
  • Imagerie par résonance magnétique
  • Métamorphose (animation par ordinateur)
  • Recalage 2D/3D

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

https://theses.hal.science/tel-04540620 (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Recalage difféomorphique, Lddmm, Métamorphoses, Glioblastomes
Resumé
Cette thèse aborde le problème du recalage d'images ayant des topologies différentes avec une déformation difféomorphique. Nous nous concentrons sur le cas des images médicales de glioblastomes, un type de tumeur cérébrale. Tout d'abord, nous avons implémenté à la fois les Metamorphoses et LDDMM pour des images en 2D et 3D. Notre implémentation est orientée objet et développée à l'aide de PyTorch, permettant une grande versatilité d'utilisation et des modifications faciles. Nous avons également utilisé un schéma semi-lagrangien sur les images et les résidus. L'implémentation est accélérée par GPU, et nous démontrons l'efficacité de notre approche à travers des expériences sur des glioblastomes en utilisant les données BraTS. Dans un second temps, nous abordons les difficultés pratiques associées aux Métamorphoses en proposant un cadre pour incorporer des connaissances préalables dans le modèle, appelé Métamorphoses Contraintes. Le cadre permet d'ajouter des contraintes sur le problème de recalage en utilisant également des a-priori. Nous présentons deux types spécifiques de prior qui peuvent être incorporées dans le modèle : un masque de croissance généré à partir d'une segmentation donnée et un champ qui guide la déformation dans une direction souhaitée. Nous démontrons l'efficacité de notre approche à travers des expériences sur des glioblastomes en utilisant des ensembles de données BraTS, en comparant avec des méthodes de pointe. Enfin, nous avons développé un outil de segmentation de tumeurs utilisant l'analyse de données topologiques (TDA) pour détecter des composants caractéristiques dans les modalités FLAIR et T1ce.